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Magnetostatic traps for charged and neutral particles 

Y. Gomer O. Harms, D. Haubrich, H. Schadwinkel, F Strauch, B. Ueberholz, 
S. aus der Wiesche and D. Meschede 

insliru/ far Allgewandle Physik, Universi tiil BOWl, D-53/ J 5 BOI/Il, Germany 

We have constructed magnctostatic traps from permanent magnets for trapping charged 
and neutral atoms. Two storage experiments are presented: a compact Penning tfap for li ght 
ions and magnetic trapping of single neutral atoms. The dynamics of cold neutral atoms and 
their loss mechani sms in a quadrupole magnetostatic tfap are discussed. 

1. Introduction 

Trapping of charged and neutral particles is a powerful experimental tool in many 
areas of physics. The careful design of homogeneous and inhomogeneous magnetic 
fields is of critical importance to many such trap configurations. In case of static 
electromagnetic traps application of strong permanent magnets gives a poss ibility to 
study various trapping configurations and physics in such devices in an inexpensive 
and compact manner. 

In principle, arbitrary multi pole field configurations with high purity or their com­
binations can be constructed from strong permanent magnets [1 ,2]. It is convenient to 
describe the field in terms of mUltipole expansion of the potential P. For a 21-order 
multipole the potential is given by Plm ex r l Yim(8, q\) . Here (r, 8, q\) and Yim denote 
spherical coordinates and spherical harmonics, respectively. The two practically most 
important cases are spherical (m = 0) multipoles with rotational sy mmetry 

PI(r, l:i ) ex rIPI(cosl:i) , (1) 

in terms of Legendre polynomials PI and plane (m = I) or 2-dimensional multipoles 
without any axial field component 

PI(p, q\) ex / cos (mq\), (2) 

where (p, q\) are cylindrical coordinates. 
It is well known from Eamshaw's theorem that static potential fields in general and 

e lectrostatic fi elds in particular cannot provide a stable binding force for a charged 
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particle. A pure magnetic fi eld provides confinement to a cyclotron orbi t in the 
di rection transverse to the fi eld lines but not longitudinally. 

In a Penning trap [3] the two open ends of the magnetic dipole fie ld can be closed 
by applyin g a repulsive electrostatic fie ld near the magnetic poles, which requires an 
electric quadrupole fi eld. The motion of a charged particle is now confi ned as long as 
the magnetic force is larger than the electrostatic force. 

A generalization of this principle is obvious: for trapping charged particles one has 
to superimpose a spherical magnetic l-pole and a spherical electrostatic 2l-pole. In a 
magnetic quadrupo le field for instance escape of charged partic les can be prevented by 
superpos ing an e lectric octupole fi eld . In regions of higher fie ld strength the Penning 
trap type of motion will qualitati vely be preserved. However, even in high fi e ld 
regions the motion is now anharmonic, and near the center it becomes completely 
irregular. Hence, although thi s higher order Penning trap is compatible with a trap for 
paramagnetic neutral atoms, it is not very promising as an experimental tool, because 
it does not all ow for instance to apply proven RF detection schemes . 

Static electromagnetic confinement of neutral atoms requires an e lectric or magnetic 
dipole force in an inhomogeneous fi eld (higher atomic multipole moments are of 
academic interest). Unperturbed atoms do not have permanent electric dipo le moments 
because of inversion symmetry, but many atoms have ground or metastable states with 
magnetic dipole moments that may be used for trapping them. The interaction between 
an atomic magnetic moment fl and an inhomogeneous magnetic fi eld E produces a 
force given by 

(3) 

If fl is antiparallel to E, the atom will be drawn to weaker fi eld regions. The 
low-field seekers will therefore be trapped in a local fi eld minimum. We consider only 
one minimum in IEI so as to obtain max imum localization of the atoms. 

For 1 > I all spherical multipoles (1 ) have a zero minimum for the fi eld magnitude 
at the origin. Hence a spherical quadrupole is the simplest magnetostatic trap fo r 
neutral atoms with a magnetic dipole moment, which was employed by Migdal et aJ. 
[4] to trap laser-cooled sodium atoms; the next one is a hexapole, which was used 
for trapping neutrons [5] , exhibiting harmonic binding to the center. Plane multipoles 
(2) provide only lateral confinement and may be used for guiding atoms or closed 
toroidally for storage rings; fUlthermore, in combination with spherical multipoles 
more complicated field configurations can be obtained. 

Because of the zero minimum in IEI, the Larmor frequency fl·E/1t for atoms passin g 
near the origin may be smaller than the orbital frequency, so that the probability of 
spin-flip transitions to untrapped states may be large [6]. For some experiments it is 
therefore desirable to have a bias fi e ld at the trap center. 

It is impossible to construct a magnetic fi eld configuration with a non-zero fi eld­
minimum from spherical mu ltipoles only : a combination of an even 1 (antisymmetrical) 
multipole with homogeneous (dipole 1 = I) fi eld shi fts only the zero-field point and 
a combination with an odd 1 (symmetrical) multipole makes either the radial or the 
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ax ial direction unstable. In order to overcome th is restriction it is necessary to break 
cy lindrica l symmetry. 

The simplest variant is the superposit ion of a magnetic bottle (spherical I = I and 
I = 3) and a plane quadrupole fi eld (l = m = 2). The magnitude of the quadrupole 
(attracti ve potential ex IEI ex r) grows with increasing radius faster than the magnetic 
bottle hexapole (repulsive potential ex ,.2) that gives us a trapping configuration for 
paramagnetic atoms with a non-zero minimum point. This is well known as Ioffe­
Pritchard [7] or its topological equivalent, baseball trap, that has been successfully 
used for trapp ing of hydrogen atoms at MIT [8] and Amsterdam [9] or in experiments 
with laser-cooled alkali atoms [10] . loffe traps of higher order with fl atter potential 
at the center but growing realization difficulties are also possible. 

The depth of magnetostatic traps scales as T = IlsLlB / ks '" 0.67 Kff wi th the 
field difference LlB between the lowest threshold and the trap minimum and is limited 
by achievable magnetic fi elds. Superconducting coils are well adopted for ac hiev ing 
maximum fie ld strength. However, for some experiments, e.g., on strong locali zation 
of atoms a small and steep trap rather than a deep and large one is required. 

Hence permanent magnets may be competiti ve or even superior in terms of achiev­
able field gradients at small scales of order of I cm [1 ,2] and offer furthermore compact 
structures and independence of utilities. 

2. Permanent magnets for trapping experiments 

Modem rare earth magnetic materials, in the first place SmCo and NdFeB have 
unique properties. First of all , the remanence B, of the material is more than I T (for 
NdFeB B, '" 1.1 T [11]), so large magnetic flux densities can be obtained. 

Even more importantly the coercive force He (multiplied by the permeabi lity of 
vacuum) is sufficiently larger than B, (HellO'" 2.07 T at room temperature). This 
means that in an assembly of these magnets opposing magnetic fi elds do not overcome 
the coercive force and demagneti zation effects are negligible. 

The re lati ve permeability almost equals I (11 = 1.08), that is, one can consider 
this material as magnetic vacuum and the superposition principle for fields originating 
from different magnetic pieces is valid . Hence the calculations are reduced to a linear 
potential problem. 

In [1 ,2] an analytical method for the des ign of arbitrary multipole field configu­
rations from strong permanent magnet materials has been developed. The idealized 
continuous rotation of the magnetization needed for maximum poss ible contribution 
to a specific multipole at the origin is approx imated by a finite number of unifomlly 
magnetized elements. 

For a spherical multipole, cy lindrical axially and/or radially magnetized rings are 
used [12] . They are re latively easy to machine, for instance by hot wire erosion, 
and simple to assemble. In a dipole (homogeneous fi eld) constructed from stacked 
cy lindrical rings a magnetic flux density of the order of the remanence B, of the 
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Fig. 1. (a) Magnetic ring assembled from identical uniformly magnetized segments. Cb) Magnetic dipole 
construction from stacked radially magnetized cylindrical rings with flux lines. 

magnetic material can be achieved easi ly. For a quadrupole the magnetic field gradient 
may overcome 1- 2 T/cm. 

Useful applications of cyl indrical magnetic configurations include Penning traps 
and quadrupole traps for low field seeking neutral atoms. 

A simple version of our Penning trap with permanent magnets is described in 
[13]. The construction (see fig. 1) gives free access to the trapping region along the 
symmetry axis and in the radial direction for particle or laser beams, has small size 
(9 cm length and 5 cm in diameter) and does not need any power supplies (for the 
electrostatic quadrupole field a battery is enough). The magnetic field of 0.7 T has a 
homogeneity better than I % in a volume of I cm3. If necessary the homogeneity can 
be further improved with shim coils driven at relatively low currents. 

The magnet assembly was placed into the vacuum chamber and cooled down to 
Liquid-nitrogen temperature. The base pressure in the cooled system was about 5 x 
10- 10 Torr. The existence of saddle (quadrupole) points in the magnetic field at the 
symmetry axis, which in our case are displaced about 2 cm from the trap center, does 
not cause trouble in loading the trap. An e lectron gun sending a collimated electron 
beam along the axis was placed 3 cm above the upper saddle point. An electron 
current of 0.3 !-lA was measured at the lower end cap electrode, which is sufficient for 
the production of ions by ionization of the appropriate residual gas molecules directly 
in the trapping volume. Various light element ions (H±, Ht , N+, NHt, NHj ) were 
stored in the trap and storage times up to 3 min were measured. In particular, we have 
now been able to produce negative hydrogen ions (H- ) by electron impact ionization 
of NH3. 

The second example is trapping of individual neutral Cs atoms in a quadrupole 
magnetic trap [14]. A standard magneto-optical trap (MOT) [15] with three orthogonal 
pairs of counterpropagating ,,+ ,,- laser beams was used to decelerate atoms from the 
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Fig. 2. Magnetic storage of individual atoms. Each data point is the result of more than 100 measurements 
wi th single atoms and represents the fraction of atoms detected after the corresponding time wi th trapping 
lasers off. The solid line is an exponential fit 10 the (x) data points yielding a mono\onicall y decreasing . 
function wi th time constant T = 38 s. Inset: Apparent oscillating detection probability. Error bars 

indicate stati stical uncertainty. 

background gas and load the trap. The magnetic quadrupole fi eld was produced by 
two opposing stacks of ax ially magnetized discs with tunable field gradients up to 
800,G/cm and a storage vo lume of a few cm3 

The fluorescence of the atoms trapped in the MOT was measured with an avalanche 
photodiode operated in Geiger mode, Well separated discrete steps in the fluorescence 
signal allow us to monitor the number of trapped atoms. A storage time of 147 s was 
observed in the MOT at the background pressure of 2 x 10- 10 Torr. 

At field gradients of 300 G/cm the magnetic force is about 10 times larger than 
grav ity for Cs atoms in the IF = 3, mF = - 3) state, so that purely magnetic trapping 
of laser-cooled atoms is possible. 

Once a single atom was detected in the MOT we switched off the lasers and after 
a variable time delay then switched on again. Immediately after switch-on we can 
detect from the flu orescence level whether the atom has survived the dark time or 
whether it has been lost from the trap. 

The result of the measurements is shown on fig. 2. The initi al drop of about 50% is 
a result of the preparation process, which does not select a specific Zeeman sublevel, 
so that roughly every second atom does not have adequate low field seeking spin 
orientation and is ejected from the trap. Neglecting the apparent 30% modulation 
(see below), the following slower decay gives a storage time of 38 s at a pressure of 
2 x 10- 10 Torr. 

The storage time in the magnetic trap is reduced in comparison with the lifetime in 
the corresponding MOT with identical background pressure. This can be attributed to 
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the increased relevance of weak collisions with the background gas to atoms trapped 
in a shallow potential, as we will discuss now. 

In order to estimate the lifetime of a sing le atom in the trap, let us first discuss the 
losses through non-adiabatic spin-flips [6] near the zero point of the magnetic field. 
The condition for adiabatic motion (no Majorana transitions) can be written as 

WL = iLeff
B »ldB I ~ = I dB I ~ 

/j dt B dr B 
(4) 

For a quadrupole field this means that the displacement from the trap center has to be 
larger than a critical distance given by 

(5) 

at all times. At a field gradient of 300 Glcm r"i' "" 0.2 >J.m for Cs and 5 >J.m for 
hydrogen atoms. 

In order to estimate the number of trajectories passing through the critical vo lume 
near the origin we numerically prepared an ensemble of 1000 atoms with starting 
positions and velocity orientations distributed randomly at an average energy corre­
sponding to E/kg = 100 >J.K. Numerical integration of atomic orbits for 10 s has 
shown that less than I % have reached displacements from the origin smaller than 
50 >J.m and none of them less than 10 >J.m. At least for this temperature losses through 
Majorana spin-flips are statistically irrelevant. 

3. Small angle scattering 

The storage time in a MOT is known to be limited by collisions with the room 
temperature ambient gas. In order to remove an atom from such a trap it is necessary 
to transfer enough energy to leave the trap. The trap depth of our MOT can be 
estimated to be of the order of 46 mK as determined from the corresponding capture 
velocity. 

Although the depth of a magnetic trap is limited by the maximum magnetic field, 
in our measurements the effective potential depth is determined by the size of the 
detection volume (the region irradiated by the laser beams). An atom ejected from the 
trap center into an orbit with a size larger than the detection volume does not fluoresce 
and is interpreted as being lost. With 1.5 mm laser beam radius and a magnetic field 
gradient of 258 Glcm trap depths of 0.4-1.3 mK are obtained, depending on the mp 
substate. The kinetic energy of the trapped atoms is less than 100 >J.K and hence the 
trap depth is also an approximate measure for the binding energy. 

For collision times which are smaller compared to trap oscillation periods both 
co lliding particles can be regarded as free during the scattering process. In a simple 
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mode l one can assume a van der Waals interaction potential for isotropic atoms, 
depending on the separati on r only, 

C 
V(r) = -6"' (6) 

r 

For small scattering angles e the energy transfer is 

2 m 
8E = e !vI E;n, (7) 

where E;n is the kinetic energy of the incoming fast atoms, !vI and m are the mass of 
the trapped and incoming atom, respecti vely. The classical di fferenti al cross section 
yields [1 6] 

a te) = const · e- 7/3 (8) 

The constant depends on the kinetic energy of the incoming particle and is tabulated 
fo r vari ous colli sion partners in [1 7]. The total loss cross section 

atot = 27r r a( e) sin e de 
) Omin 

is determined by 

e m;n = JEEB!vI , 
mm 

(9) 

( 10) 

which corresponds to the minimum energy transfer requi red to lift a trapped atom 
across the potential barrier of the trap, i.e., the binding energy EB . This effecti ve 
cutoff a lso removes the we ll known di vergence of thi s class ical total cross section for 
Bmin ---+ O. 

Since the composition of the background gas is not known, the calculations for the 
total cross section are made for He- Cs collisions. For room temperature He atoms 
and the mp = -3 sublevel we can now estimate em;n "" 0 .0 I and the classical total 
loss cross section aWt "" l.5 x 10- 14 cm2 

At least some of us found it counterintuiti ve to apply qu antum mechanics to the 
scattering of thermal atoms. An estimation of the critical ang le for quantum scatte r­
ing B,,;t shows that it is necessary, however. Thi s critical angle corresponds to the 
quantum mechanica l uncertainty in the position of the scatte ring particle during the 
collision event. The latter can be estimated from the max imum impact parameter 
b = Jatot / 7r "" 7 A and is to be compared to the de Broglie wavelength AD "" 0.7 A 
of thermal helium atoms. The class ical considerations are valid if the minimum scat­
tering angle e m;n » O,,;t = AD/47rb "" 0 .008, which is obviously not the case here. 
Hence, the contribution of the quantum corrections to the total loss cross section can­
not be neglected. This result is cau sed by the enormous sensiti vity of the shallow trap 
to weak collisions. Note that the resolving power of the measurement process can be 
easily increased by reducing the laser beam diameter. 

The corrected d ifferential cross section [1 8] 

a(O) = const · 0- 7/ 3 [1 - exp { - (B/ Bcrit )-7/3}] ( 11 ) 
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yields iT!a! = (1.38, 1.43 , 1.50) x 10- 14 cm2 in the magnetic trap, corresponding to a 
storage time of (69,67,64) s for mF = -3, -2, - I , respectively. The weak influence 
of the magnetic sublevel on the cross section justifies the use of a single exponential 
fit. Since multiple collisions, each with energy transfer less than the trap depth, can 
occur, the calculated storage times have to be interpreted as an upper limit. 

4. Classical dynamics in a quadrupole trap 

Surprisingly, the probability of recapturing the magnetically trapped atom into the 
MOT oscillates (inset in fig. 2) with a period of order of 2 s, which is not understood 
up to now. The loss process is by nature irreversible. The probability of capturing 
a different atom during the detection procedure was less than 4% and has been sub­
stracted from the data. So the observed 30% modulation must be a property of the 
dynamics of the detection process . A magnetically bound atom can walk beyond the 
detection volume and, due to small laser misalignments, may actually be ejected from 
the trap by the trapping laser light instead of being detected. However the observed 
characteristic time of 2 s is not compatible with typical trap oscillation periods of order 
of 10 ms. Therefore we have begun to study atomic trajectories in the quadrupole 
trap in more detail. 

There are several other reasons for studying the motion of atoms in a magnetic 
trap. Knowing their positions and velocities may be important for speclroscopy and 
cooling of atoms. For instance, in the theory of evaporative cooling [19] the basic 
assumption is "sufficient ergodicity": that is, the distribution of atoms in phase space is 
assumed to depend only on their energy. This would be the case in a trap with ergodic 
single-particle motion. The dynamical problem itself with its asymmetric anharrnonic 
potential does not have an analytical solution and is of common interest. Collision less 
motion of neutral atoms in a loffe trap was discussed in [20]. 

We can assume that the atom magnetic moment adiabatically follows the local 
magnetic field, i.e., the atomic motion does not induce any change in the relative 
orientation of the effective magnetic moment f.'eff and field direction. In this case the 
effective potential energy is 

v,nag = f.'effIBI. (12) 

Because of azimuthal symmetry of quadrupole field B ex (-x, -y, 2z) the z-com­
ponent of the angular momentum Lz is conserved. Consequently the equations of 
motion are reduced to a two-dimensional problem in (p, z) coordinates with effective 
potential 

(
p ) L2 

Veff(p,Z)=m 2:v'p2+4z2+gz + 2m> ' 

where 

p = f.'eff aB 
m az 

(13) 

(14) 
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is the maximum magnetic acceleration in such a field. 
introduce a natural radius Po and a natural time T 

For the sake of clarity we 

_ ( 2L; ) 1/3 
Po - aB and T = V pol (3 

m{.1effaz 
( 15) 

and the ratio 

(=gl(3 (16) 

of magnetic and gravitational acceleration. With these definitions we find the minimum 
or fixpoint of the potential at 

Po ( (/2) 
(Pm ,zm) = (1 - (2)1/6 1, - (I _ (2)1/2 ' (17) 

which reduces to (Pm,zm) = po(I,O) for gl(3 ---; 0 as is the case for increasing 
field gradients. The fixpoint corresponds just to the simple circular motion around the 
potential symmetry axis with the radius PO and revolution period 27fV2T. 

We can also rewrite for convenience the effective Hami lton function , normalized to 
the natural energy Eo = m(3po, and with normalized coordinates z = zl Po, p = pi Po 
and time i = tiT, and immediately leaving out the tilde symbols: 

I I I 
Heff(p,Z) = 2(i} +i2) + 2Vp2 + 4z2 +(z+ 4p2 ' ( 18) 

In the next step we expand the effective potential in (p, z) coordinates to lowest 
order in a harmonic series, 

1 1 2 2 1 2 2 () m Veff(p, Z) 0= 2Wp(P - Pm) + 2WZ(z - Zm) + 8(p - Pm) Z - Zm . ( 19) 

The harmonic frequencies are calculated from the curvatures of the potential minimum 
at (Pm, zm) and expressed with the zero gravity frequency w5 = (312po, 

w~ = (3 + (2)( 1 - (2)2/3 w5 , 
w2 = 4( I _ (2)2/3 w2 

Z . 0, 

8 = 2((1 - (2?/3 w5 . (20) 

In the zero gravity limit, Wp = vGwo and W z = 2wo, the two oscillations are uncoupled 
(8 = 0). The bilinear structure of the equation (19) calls for a normal mode analysis. 
New eigenfrequencies Dp,z are obtained from the secular equation 

1 
D2 - W~ -8 1_ 

-8 D2 _ w2 - 0, 
z 

(2 1) 

yielding (see fig . 3) 

D~ = ~w5(1 - (2)2/3 { (7 + (2) - )(1- (2)2 + 16(2 } , 

D; = ~w5(1- (2f/3 {(7 + (2) + )(1 _ (2)2 + 16(2 }. (22) 
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Fig. 3. Eigenfrequencies in a magnetic quadrupole trap as funct ions of (. AI ( ..---+ I the trap becomes 
unstable. 

In the fi rst order of perturbation we have two coupled harmonic osc illations with 
two characteristic frequencies (20). These frequencies scale with the same power of 
the angul ar momentum and therefore their ratio is a universal constant for all atoms 
in the trap (a function of the field gradient only). 

We have also numerically integrated class ical Hamiltonian equations of motion . 
From these we have learned that for field gradients of 50-1500 G/cm and energies up 
to El ks = I mK, i.e. , far above typical energies in our experiments, the trajectories 
are generally regular. 

Although the ex pansion of eq . (20) leading to the simple oscillator description 
of eq . (22) should be valid only for trajectories slightly dev iating from the effec­
tive potential minimum it still gives reasonable qualitative agreement at much higher 
excitation. 

As expected from classical nonlinear dynamics with increas ing energy chaotic mo­
tion sets in first at rational Dpl Dz . For adequate description of unclosed, bounded 
orbits and to di stinguish between chaotic and regular motion Poincare sections were 
calculated for various magnetic fi eld gradients. For every given ( we prepared an 
ensemble of 30 particles of equal energy with positions and velocities di stributed ran­
domly. We foll owed trajectories for up to LOOO points of intersection. The relevant 
time scale corresponds to several minutes . When the energy approaches some critical 
value, the stability islands on the Poincare plots break into successively smaller islands 
showing clearl y transition to chaos. In fi g. 4 we show the results of our computer 
simulations. 

In conclusion our analysis suggests that trajectories in a quadrupole trap are 
quas iperiodic for all energies relevant in our experiment. 
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